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The authors have obtained exact explicit dependences for calculating the thermal
diffusivity from measured temperatures of a material when heated by local heat

sources of variable power.

The objectives of increasing the information about and simultaneously simplifying the .
technology of a thermal experiment have motivated -improvement of methods of determining the
thermophysical characteristics of materials by using the laws of unsteady heat conduction.
The present study brings the solution of the problem of determining the thermophysical pro-
perties in two-dimensional geometry with heating of sémiinfinite specimens by local heat
sources of variable power to the development of the approaches used in [1-4].

With reference to the process of propagating heat in an orthotroplc material we con-
sider the following mathematical model:
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which occurs, for example, in heating of a half space by local heat sources (distributed or
concentrated). .

With the help of the integral transforms of Laplace T(r, z, s) = (exp(-ST)T(r, z, 1)dt
' ]

and Hankel T(p, z, s) = f rJo{pr)T(r, 2z, T)dr the solution of the system (1)-(2") can be re-
. 0
represented in the form
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where q(p, s) = J’rJo(pr)q(r, s)dr. For heat sources concentrated in a neighborhood of

. 6
radius Ro, uniformly distributed within a neighborhood of radius Ro, and concentrated at a

Q6 s Ry,

point, respectively, the following expressions occur for ¢(p, s): l%;Q-JO(pRQ, R
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(26)’ where Q(s) is the power of the heat source.
T
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TABLE 1. Results of Estimates of Parameters a, and n from
"Exact" Original Data

n, from| n,from a,-10¢, m?/ sec a,-100, m¥/sec with  m=1
Ty, Tos | Ty, Tos -

The $6C (T T | I T by T, Tus e DY Ty, Tei mi by 7., Tuiby T T [BYTL, T
0.4 —6,19 10,20 8,6.106 2,0-108 1,2-102 4,2-10° 0
0,8 8,00 8,29 34,20 36,23 0,60 0,78 0,86
1,2 4,29 4,67 10,85 15,59 0,63 0,72 0,76
1,6 3,85 3,95 9,31 9,73 0,66 0,75 0,79
2,0 3,81 3,84 9,44 9,58 0,69 0,78 0,81
2,4 3,83 | 3,84 9,74 9,79 0,70 0,79 0,83
2,8 3,86 | 3,86 10,02 10,03 0,71 0,81 0,84
3,2 3,89 3,88 10,28 10,26 0,72 0,82 0,85
3,6 3,92 3,91 10,49 10,47 0,72 0,82 0,86
4,0 3,95 3,94 10,67 10,64 0,72 0,83 0,86
4.4 3,96 3,96 10,77 10,76 0,73 0,83 0,87
4,8 3,97 3,97 10,84 10,83 0,73 0,83 0,87

Allowing for Egqs. (5) and (3) the connection between. the transforms of the temperatures
T(0, z1, s) and T(0, z2, s) in the case of a source concentrated in a neighborhood of radius
Ro can be written in the form

=T(O,zl,s)_l/‘ n2s + R} [__I/_S— Vo z S Vo 2]
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whence we have

dp _ Vit R3—Vuii+ R 0 59
ds 2Vsa, .

After transferring to the originals, in accordance with [6] we obtain

o = — [zl + R%)”z——(nzg-%—Rg)'/zlz[M]Z, 6)
4 P2 (7)

where

° 9 _ 6
0 .

o (1) = f(t—%) T1(8) To(v—8) db; (6")
0

T, (0)=T(0, 21, 0), To(0)=T (0, 2z, 6).

Equation (6) relates the parameters a, and n explicitly with the measured temperatures
at two points on the symmetry axis, for arbitrary laws of time variation of the power q(1)
of a heat source concentrated in the neighborhood Re. -

In the case when n = 1 from Eq. (6) we can compute a set of values of the parameter
a = ay for any previously given time intervals tj during the time tp, we can estimate the
errors in determining a desired parameter and can check the correctness of representing the
real situation by a linear model (condition of constancy of the thermophysical characteris-
tics).

When n # 1, the value of the parameter n can be obtained if we know the measured tem-
peratures at some point with coordinates r = 0, z = z3. 1In this case from Eq. (6) we have
that ,

(2 4+ R)'* — (mz] +RD)'” _ 0T Tl b lTo T3l _ o
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TABLE 2. Results of Estimates of Parameters g, and n in the
Presence of Random Errors in the Original Data

7, sec
Parameter |7 o8 | 1,2 | 1.6 | 2.0 | 2,4 ) 2.8 [ 52 | 5,6 | 40 | 4
m by Ty Tas|—6,2] 8,0 {43 3,9 |38 |38 |38 |39 |39 |3,.9%]3,%
T1, Ts —6,216,2 [ 4,4 137 13,9 {54 15,0 [4,6 [4,5 14,56 |4,5

—6,2(8,4 |55 |36 36 [48 4,8 |4,1 [3,8 |3,6 |3,1

—6,2|7,8 | 4,3 14,2 |38 2,7 {29 [|34 |38 |37 |3,

-6,217,3 | 4,6 12,3 2,56 (3,3 |35 |34 |3,1 {8,1 |3,2

by Ty, Ts;{ 10,21 8,3 {4,7 |39 13,8 |38 [3,8(3,9 {3,9 |3,9]3,9
BT 1020705 |36 |44 |35 |48 |53 |49 |46 |45 |45
10,5(8,56 | 5,6 | 4,0 {356 [43 |49 (4,5 4,1 [3,8 |34

10583 |43 |40 |a15|32 |28 |31 |35 |37 |36

1000]88 |54 |30 |22 |29 |34 |35 |33 |31 |31

2

-108,m*/sed 5-10¢} 3,42 1 1,09 10,93 0,94 10,97 1,00 1,02}1,051,07}1,08
by Ty Teimy|6-10¢ | 2,22 | 1012 | 088 | 1,00 | 178 | 1}62 | 1)36 | 133 | 1)32 | 1,35
6.10¢| 371 | 1.66 | 0.81 | 0.88 | 1748 | 1,50 | 1715 | 0,98 | 0,84 | 0.67

6-1041 3,35 | 1,07 | 1,07 { 0,92 0,53 10,60 0,78 {0,97 | 0,94 | 0,86

5-10¢12,92| 1,24 0,3610,43 0,73 10,8 {0,8 [ 0,70 0,68 | 0,73
ar.IOB,mz/sec 3.10¢(3,621,26]0,9710,9 | 0,98 | 1,00} 1,03)1,05]1,06]|1,08
by Ty, Ts; 1| 3-10¢| 3,08 | 0,78 | 1,17 | 0,82 | 1,48 | 1,74 1 1,51 | 1,39 | 1,35 | 1,34
3.10¢1 3,81 11,74 10,99{0,83]|1,23|1,54|1,341,14}0,97 0,80

3.10¢| 3,71 1 1,09 (0,98 | 1,08 | 0,71 | 0,58 1 0,70 | 0,85 | 0,94 | 0,91

3.104} 3,961 1,61 ]0,58)0,35]0,6010,8}0,8 10,77 } 0,70 0,71

where ¥y [T3, Tkl, ¥2[Ty, Til, ¥1[Ty, Tj], ¥2[T{, T;] denote integral combinations of iy, (1),
Y2(1), computed with the aid of Eqs. (6')-(6") according to the appropriate pairs of Ti, Tj
and Ty.

‘From Eq. (7) using identical transformations we can obtain explicit expressions for
estimating the parameter n:

4(1—F)F, (1 —F,) — 2} + F.21]

VT E(—Frt - Far—a(l— Fpaa 8

or

4F, [z (1 —F 2 2! —23Fs + F, B + 2D
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. 2; = z/R,, _z-j = 2j/Ry, 2, = 2/R,.

Thus, from the known pairs of values of Ty, Tj, Tk, using Eq. (8) or (8') we determine
the parameter n for any previously given number of time intervals in the duration of the
test tp. The set of estimates of the parameter n obtained can be used to analyze the con-
vergence of the computed values to some constant value and to check the correctness of re-
presenting the real situation by the linear model.

We note that estimates of the parameter n can be used for various F, computed according
to different combinations of pairs from Ty, Ty and Ty. There are evidently two such inde-
pendent estimates in this case. After the parameter n is determined the estimate of thermal

diffusivity ay can be used in Eq. (6) along with any combination of the available Ti, Ty,
T v .
kc

In the case of a local source concentrated at the origin of coordinates (a point source),
using the above integral transformations we can write the relation in Laplace transform
space between the temperatures T{r;, z,, s) and T(r,, 22, s) in the form

T(ry, 21, 8) _ (e +r3)"? ]:_ l/_s_

= : Va2 2__ V.2 5
T (rs 25, 9) (2 + rit/e »EXpl Z (Vmzi+ri nez + rz)J, €))

where r., z,, T2, z2 are coordinates of the points at which the temperatures were measured.
From Eq. (9), in analogy with the case examined above, we obtain
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Fig. 1. Original data for computing and results of estimates of the para-
meters n and ar: 1) source power; II, III, IV) temperatures on the axis

of symmetry (r = 0) at distances 0, 2 and 4 mm from the surface, respective-
ly; 1) n: from T,, T2; T,, T3; 2) n. from T,, T3, T2, Ta; 3) a, fromT,, T,,
nis 4) a¢ from T,, Ts, na2. q, W/m} AT, K; ar, m*/sec; 1, sec.

@, = —i—[(nh-i-n)”? (mez + 3 )”212[ b (9 ] (10)
¥ (1)

where $;, J, are computed from Eqs. (6') and (6") using as T,(8) and T,(8) the quantities
T(r,, 21, 8) and T(r., z,, 8), respectively.

If n =1, from Eq. (10) we can estimate the parameter a I ay for the chosen number of
time intervals in the test. But if there is a basis for putting n # 1, then to determine
n we can use Eq. (8), which postulates the presence of measured temperatures at three points
with coordinates z,;, 22, 23 and r; = r2 = r3 = 0. But if the coordinates of the measured
temperature points are arbitrary, then the parameter n can be determined from the relation

(T]Zz-f-fi);/?—(flzg-}—fg)”z — "1‘)1 (T (ry, 23, 1), T(rs, 2, )] ‘}:72 (T (ry, 21, 1), T(ry, 2, )] (11)
et + ) — R+ ) WIT 26 O, T 2 ONR(T (210 %), T, 20 7)1

which in general reduces to an equation of second order in the parameter n.

When the half space surface is heated by a distributed heat source in the form of a
disk of radius Rg, in analogy with the cases examined above we can obtain a relation of
the form

— /—_T__ e, | [__ /I ) 21/2]
TO 2,9 _ p{ V —n 21] exp|— |/ ar('fl21+Ro)

TO 29 eXPl ]/——n za]—exx)[ ]/: (n2§+R3)”2}

T

(12)

which relates the transforms of temperatures at the points z; and z, on the symmetry axis
(r =0).

If clearly n = 1, then from Eq. (12) we can obtain comparatively simple relations to
determine the thermal diffusivity for certain z, = f(z,). For example, if z, = 1.25z, +
0.75(z? + R%)!/2, then

P(s) = wplyf;;@y—hq[1+EW{;‘V/;§(V%+J¥—JQB7aEan 13)

where ¢ (s) = T(0, z,, s8)/T(0, z,, s). Differentiating Eq. (13) with respect to s, we have

(z2 + RY)'? — (32, — 22,)  (z—2) (B + R — (22, —2)))

Vs v = Ve ? (). (14)

(¥ (s) Vsl +
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After carrying out the differentiation in Eq. (14) and a number of identical transformations
and transferring to the originals, we obtain a relation for determining the parameter a:

_ 2 21/2__ . .
P (t)a+Va -+ Ro) 5 (82, — 229 Ipz(T)—(‘zleﬁ)" [(z§+R3)1/>2_(222_21)]¢3(T):(), (15)
where
P (1) = f(3e——r>rz(e)f1(r——e)de—%fme)ﬂr—e)de; (151)
0 ' 0
9 ;]
h@)=[0—29T,0—HTI Q& )= [0 —2B) T @ T(0—)dk;
0 0
1 F "
P2 (1) = == 1 (0) [f1 (v — O)—F (v—0)] d6; (15")
¢ T 2
20) = (=22 dt; f,(0)= (T, T.0—8dk;
hO =g & 1O [Ten.e—nd
lp;(r) = ffs (6) Ty (v — 6) db; (15")

0

T,(0)=T (0, z, 0); To()=T(0, 2, 0).

If n # 1, for this variant we were not able to obtain rather simple explicit relations
to determine the parameters a, and n from the measured temperatures in a single test.

_Besides'the relations presented, comparatively simple relations to determine Ay and n
can be obtained when we are using the results of temperatures measured in several tests.
For ekample, if there are tests with local sources concentrated ‘in neighborhoods of radii
Ros and Roz, then with the condition q.(1) = q(1) from Eq. (3) for the point r = 0, z = z;
we obtain o :

Py (7) T
’ (16)

¥y (1)

where ¢,, ¥, are calculated from (6')-(6"), and for T, and T, we use the results of measure-
ments of temperatures at the point r = 0, 2z = z, in the first and second tests, respectively.

1
4=~ Wzt + RS — Vined + RSP [

If n # 1. then to determine @, and n when measuring temperatures at only one point
(r = 0, z = z;).we can use the experimental data obtained in one test with a source concen-
trated in a neighborhood of radius Res, and here it is postulated that q.(t) = q.(t) = qs(1).
In the latter case to determine the parameter n a formula of the type of Eq. (8') is valid.

4(1 — F)F 5 (1—F,) — 2} + Fy2il
7] = —9 -9 —9 5-2—2 ’ (17)
[7i (1 —F, 242 — F,z;*—4(1 — F, )%z z

where n* = n=', where z; = Roj/2i, Ej = Roj/zj, zx = Rop/Zks 1, j» k =1, 2, 3.
Comparatively simple explicit expressions to determine a, and n can be obtained when
using the measured temperatures in several tests with different sizes of circular sources
distributed within a neighborhood). For example, having available data of two tests with
gource dimensions R; and R,, with the condition q,(t) = q2(t) on the line r = 0 for z = z,,

7z = Z, we have
eXpF—[/ > n‘”zl]—exr)[——]/ > (nz?+R?)”2]
7.0, 24, Q:: a a, ) (18)

- 7 s
T, (0, Zg, S) exp {__ 5 nl/zzzJ — exp [_ i// S ("]Zg + Rg)1/2j|

a, a,

Evidently, if z; = 2z,, Ry = 2R,, then
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2 ’f— | s —_— /2 |
ls) = exp [— z'/? '/ —7:7_] ll + exp [—‘ l/_Z‘ (V'r]zg-i- R%“Tll’"zz)J}v

(19)
®E)=T1(0, 21, iT2(0, 2z, s).
For z, = z, = 0 it follows from Eq. (19) that
V) = — e 0 (9) + (20)
V 2 Vsa,
whence, after differentiating and transferring to the originals, we obtain
Rg 61 (1) ?
= —— | ———— |,
Sl el L
where
8
1 (1) = V:n y'rm—e (T2 ®) — Ty ©1(0—8"/* atds; (21"
0
- T
b2 (1) = [ (t—20) T, (6) T, (v— 6) do. (21"
0
And if z,, z, # 0, then
’ o \/ 1 — ’
@ Vs) +— [(n2z + R3)'* + n'*za7' P ¢’ & —i—(nzﬁ + R3)! P2 a7 s <, (22)
and after transferring to the originals we have
() a, + —— (23 + R + 1'%z 0 %, () +———(nzz + R3)%2n' Py (1) = (23)

where y,, V2, Vs are computed from Eqs. (15')-(15"'), and T, = T,(0, zs, 1), T2 = T2(0, za,
1). Whenn # 1 we can use Eq. (23) along with Eqs. (21) and (15) to determine the thermal
diffusivity. But if the parameter n is unknown, we can proceed differently, depending on
the volume of measured information. From Eq. (23) on the basis of the postulate that ary
and n are constant it follows that

(23 + RY'Z + 0"z _ bl — (buibed/ (i)
2 Ve, Vet [(b2isi)/ ($2ies) — 1]

=D (24)

28+ RS0 2y _ il — (e b)) _ 25)
4a, Psi [($s52:)/(Psi ) — 1] »

where the subscripts i and j refer to different time intervals of the two tests (with
sources of radius R, and R and identical q(t)), or to arbitrary time intervals of two
series of tests with different q(t) in each series. It follows from Eqs. (24) and (25)
that

= 2z2 l/ﬂ(ﬁ—4) ) B=pipe @8

After n is determined from Eq. (26) we can find a, from Eq. (23).
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If, besides the measured temperatures in two tests with source radii R, and R: (at
points z = z; in the first first and z = z, in the second), in these we measure temperatures
at the points r = 0, z = 0, then the parameter a, is easily determined from Eq. (21), and
the parameter n is determined direectly from Eq. (23), which can be expressed relative to n.

Some of the relations obtained were confirmed by formulating a number of model problems,
where as test data we used computed temperatures of a half space with heating by local
sources of variable power. The data from one such numerical experiment are shown in Fig. 1
and in Tables 1 and 2, In this experiment the radius of the local source concentrated in a
neighborhood was 0.0l m, and the parameters Ay, Ay, drs N were: Ap = 40 Wem™ oK™, Ay =
10 Wem™* K1, @p = 0.111¢107“ m®esec™, n = 4; in the data reduction we used temperatures
computed for the points with coordinates r = 0; z, = 0; 2z, = 2 mm; zs = 4 mm; the time step
was 0.1 sec.

Estimates of the parameters d, and n were generated both as "exact" original data and
as data containing random errors with a uniform distribution and op = 0.005|T|. From the
results shown in Table 1 it follows that estimates of the parameter n using different com-
binations of Ty, Tj, Tk under the condition or = 0 converge quite rapidly to the true value,
- equal to 4. The values of n (n., nz) obtained were used to compute two sets of estimates of
the parameter ay. The valuas of the parameter g, appearing in both sets of estimates show
very good interagreement and converge rather rapidly to the true values with increasing time
of the test intervals used in the processing. Table 1 also shows estimates of the parameter
a, obtained under the assumption n = 1. As follows from the results shown in this case the
computed values of a, differ appreciably from the true value, and in addition one observes

a noticeable difference of the estimates obtained when different combinations of Ti, Tj, Ty
are used. .

The influence of interference contained in the experimental information is illustrated
by the data of Table 2, where the first columns for each parameter contain estimates from
the "exact" original data, and the remaining columns have data from different tests with
op = 0.005|T|. As can be seen from the results shown, the presence of random errors of
"average' level allows us to obtain estimates of acceptable accuracy for the unkown parameters
n and a, even for-comparatively short tests, which is due to some extent to the filtering
properties of the integration process performed in the computed dependences. Naturally, in
each specific case the level of reliability of the estimates obtained is determined by the
behavior of the corridor of errors of the computed values of the desired parameters as a
function of the length of the time intervals of the tests used to process them. This
corridor in turn can be constructed by using simple algorithms to compute elements of the
error matrix of the parameters estimated.

NOTATION

T, temperature; q, heat source power; r, z, spatial coordinates; 1, 6, £, time; a, dr,
thermal diffusivity; Ay, Az, thermal conductivity in the directions r and z; ¢, rms error
of the measured temperatures; Jy, Bessel function of order v,

LITERATURE CITED

D. N. Chubarov, Inzh.-Fiz. Zh., 32, No. 3, 418-423 (1977).

Yu. L. Gur'ev and D. N. Chubaraev, Inzh.-Fiz. Zh., 35, No. 2, 250-257 (1978).

V. I. Zhuk, S. A. I1'in, and D. W. Chubarov, Inzh,-Fiz. Zh., 41, No. 2, 225-231 (1981).

. G. T. Aldoshin, A, S. Golosov, V. I. Zhuk, and D. N. Chubarov, Inzh.-Fiz. Zh., 45, No.
5, 794-797 (1983).

5. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic

Press (1960).
6. A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967).

IS N

1423



